US 2006/0143146 Al

[0015] FIG. 1 describes the process of retrieving a prop-
erty from a configuration file. At step 102, an external
program requests the value of a configuration property by
passing in a configuration ‘key’ of the format ‘config.sec-
tion.name’ (e.g. ‘MyConfig.MySection.myVal’). At step
104, the configuration key is parsed, and the process checks
to see if the configuration file identified by the ‘config’ part
of the key has been loaded into memory (e.g. ‘MyCon-
fig.cfg’).

[0016] At step 106, the configuration file is loaded into
memory. This consists of reading all properties in the
configuration file and storing them in memory. At step 108,
the property value associated with the key is retrieved from
memory. At step 110, the property value is checked to see if
it has a variable in it by looking for the string pattern
‘$x{y}’, where x consists of one or more letters, and y
consists of a string with zero or more recursively nested
variables. At step 112, the variable is extracted from the
property string. If the ‘y” portion of the variable contains
recursively nested variables, then these are recursively
resolved until the ‘y” portion of the variable contains no
variables. Then a variable-resolver (described in more detail
below) associated with the string “x’ is used to resolve the
value of the variable as plain text. This plain text value is
then reinserted into the original property string, overwriting
the previous variable. This process is repeated until all
variables in the property are resolved to plain text.

[0017] At step 114, the resulting plain-text property and
returned to the external program. Optionally, the resolved
property value can be stored in memory in place of the
previous value in memory so that subsequent property
retrievals do not have to re-resolve the variables.

[0018] The variable-resolver is a construct that accepts
input text, and returns output text relevant to the input text
passed in. In Java, this can be accomplished by implement-
ing classes of the following interface:

public interface Var {
public String resolve(String arg);

}

Each variable type defined in a configuration file must have
an associated variables resolver (e.g. $C{y}CVar,
$L{y}LVar, etc.).

[0019] The following variables have been defined that
implement the dynamic nature in the configuration files.

[0020] $C{Config.Section.Name}—Implements the
cross-referencing capabilities between configuration prop-
erties. The value of ‘Config.Section.Name’ is passed to the
process defined in FIG. 1 to resolve the value of the
specified property.

$L{ResourceBundleProperty }—Implements international-
ization support. The value of ‘ResourceBundleProperty’
refers to a property defined in a Java resource bundle.

[0021] $MB {expression}—Implements Boolean math
support. The value of ‘expression’ is a Boolean mathemati-
cal expression, and the $MB variable resolves to the strings
‘true’ or ‘false’. Example: SMB{(1>2|3<4) & false}‘false’

Jun. 29, 2006

[0022] $MI {expression}—Implements integer math sup-
port. The value of ‘expression’ is a mathematical expression,
and the $MI variable solves that expression and returns the
resulting integer as a string. Example: $MI{1+2%3}¢7

[0023] $MF {expression}—Implement float math sup-
port. The value of ‘expression’ is a mathematical expression,
and the $MF variables solves that expression and returns the
resulting float values as a string. Example: $MF{3/(1+
1.3

[0024] The flow of the process described in FIG. 1, known
as the method “ConfigMgr.get()™, is as follows:

[0025] 1. User calls
ConfigMgr.get(“MyConfigl .MySectionl.myVarl™).

[0026] 2. ConfigMgr parses key.

[0027] 3. ConfigMgr looks for file MyConfigl.cfg in
internal cache. If not found in the internal cache, then
the file is loaded into the internal cache.

[0028] 4. ConfigMgr looks for MySectionl in MyCon-
figl.

[0029] 5. ConfigMgr looks for myVarl in MySectionl.

[0030] 6. ConfigMgr retrieves the value for myVarl
from memory and puts the value in VALUE.

[0031] 7. ConfigMgr calls VALUE=ConfigMgr.re-
solve(VALUE).

[0032] 8. ConfigMgr returns VALUE.
[0033] The flow of ConfigMgr.resolve(X) is as follows:

1. Looks for existence of first $__{} variable. If none exist,
returns X.
2. Get contents of body of variable (i.e. $C{<body of variable>})
and puts it in BODY.
3. Calls BODY = ConfigMgr.resolve(BODY) to recursively resolve any
internal variables.
4. Depending on the variable...
If ($C) {
calls CVar.resolve(BODY), and replaces $C variable in X
with the results.
} else if ($L) {
calls LVar.resolve(BODY), and replaces $L variable in X
with the results.
} else if ($MB) {
calls MBVar.resolve(BODY), and replaces $MB variable in X
with the results.
} else if ($MI) {
calls MIVar.resolve(BODY), and replaces $MI variable in X
with the results.
} else if (SMF) {
calls MFVar.resolve(BODY), and replaces $MF variable in X
with the results.

5. Go to step 1.

[0034] Passwords can also be stored, using the present
invention, in dynamic configuration files thereby resulting in
a reduced security risk. Using the present invention for
password encoding functions as follows. If a “*” is added to
the end of a property name in a configuration file, the value
becomes encoded the first time the file is encountered
through the ConfigMgr utility. Thus, if a file appears as
follows:

